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The p r o c e s s  of gas diffusion f r o m  bubbles ,  r i s ing  f r ee ly  in a l iquid,  is invest igated.  The depen-  
dencies  of the bubble rad ius  on t ime  and the coordinates  a re  given. 

The p r o c e s s  of e scape  and dissolut ion of a gas r i s ing  in a liquid has  been studied by a number  of inves t i -  
ga to r s  both in the genera l  formula t ion  and in re la t ion  to individual p r o b l e m s  of chemica l  technology,  heat  
e n e r g e t i c s ,  and o ther  b ranches  of eng ineer ing .*  

The gas  usual ly  e s c a p e s  f r o m  nozz les ,  p e r f o r a t e d  p la tes ,  o r  fine porous  (for example ,  m e t a l l i c - c e r a -  
mic)  m e m b r a n e s .  He re  d i f ferent  e scape  r e g i m e s  can occur :  je t  (Reap > 7. 103), in te rmedia te  (Reap =2.103-  
7- 10~,  and bubble (Reap < 2 "10~. However ,  in all  ca ses  (even a t  a sma l l  d is tance  f r o m  the d i scharge  a p e r -  
tu res )  the j e t s  and bubbles of l a rge  d imens ions  lose  s tabi l i ty  and b r e a k  up into s m a l l e r  bubbles.  According  to 
e x p e r i m e n t a l  data a i r  j e t s  while escap ing  in outflowing into the wa te r  d i s in tegra te  into bubbles of d i a m e t e r  
f r o m  0.02 to 1.20 c m  at  d i s tances  on the o rde r  100 m m  above the ape r tu r e  [2]. 

The c r i t i ca l  radius  of the bubble a t  which i t  s t a r t s  d is in tegra t ing  is  [3] 

I 
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Therefore, in analyzing the process dissolving gases in a liquid in studies of an applied nature the ele- 
mentary act of this process is most often investigated, i.e., the diffusion of the gas from individual bubbles 
rising under the action of bouyancy. The following assumptions are usually made [1]: the constancy of the 
bubble volume decreasing due to gas dissolution and increasing due to a hydrostatic pressure decrease; con- 
stancy of the gas density in the bubble and the rate of rise of the bubble; constancy of the concentration pres- 
sure. 

Bes ides ,  if the bubbles contain d i f ferent  g a s e s ,  then the approximat ion  of the i r  independent diffusion is 
used. 

These  s impl i f ica t ions  a re  not a lways just if ied.  

If an exac t  de te rmina t ion  of the d imens ions  of  the bubbles in d i f ferent  segments  of high absorpt ion  co l -  
umns  is  r equ i r ed ,  then in computing e scape  of the gas into a wa te r  tank of g rea t  depth or  in computing bubbles 
of smal l  d imens ions  the assumpt ions  about the constancy of the volume and the r a t e  of r i s e  of the bubble (ac-  
cordingly,  a l so  the dissolut ion rate)  and a lso  the constancy of the gas densi ty  in the bubble can lead to a p p r e -  
ciable e r r o r s .  

According to expe r imen ta l  data of a number  of w o r k e r s  [4, 5] the ra te  of f r ee  r i s e  of gas bubbles of 
rad ius  l a r g e r  than 1 m m  is p rac t i ca l ly  constant .~ 

The ra te  of r i s e  of bubbles with r > 0.2 m m  is l inear ly  re la ted  to the radius .  In the p rob lem of r i se  of 
bubbles with r < 0.2 m m  there  have been d i s a g r e e m e n t s  between the theory  and expe r imen t ,  which  are  e x -  
plained in [3] by the af fec t  of bubbles of sur face  act ive  m a t e r i a l s ,  which a re  contained in impure  l iquids,  on 
the hydrodynamic  boundary l aye r .  According  to r ecen t  expe r imen ta l  data (for example ,  see  [6]) the mot ion of 
bubbles for  Re  b =2-40  obeys  the laws obtained fo r  fal l ing spher ica l  liquid drops .  The ra t e  of r i s e  of bubbles 
is p ropor t iona l  to the square  of the radius .  

*See bibl iography in [i]. 
~The ra te  of r i s e  of a i r  bubbles r > 1 m m  in w a t e r  is about 30 cm/sec .  
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TABLE 1. The Phase Equilib- 
r ium Coefficient (values of m 
for  aqueous solutions in bar) 

Gas 
Temperature, ~ 

Hydrogen 58700 
Air 42400 
Oxygen 25700 
Nitrogen 53600 
Carbonic acid ] 737 

69300 
62700 
40500 
81500 
1440 

The validity of the assumption that Ac = const depends on the specific conditions of the problem. Usually 
this condition is associa ted  with the smal lness  of p r e s s u r e  change during the r i se  of the bubble or  the p ropo r -  
tionality of the gas density dissolved in the liquid to the p re s su re  (the Henry ' s  law). General ly speaking these 
conditions cannot occur  (for example,  in columns of large height). 

The approximation of independent diffusion is applicable for binary diffusion in cases  of dilute mixtures  
and for equal diffusion coefficients of the components [7]. 

We consider  the problem of the r i s ing and dissolving of a gas bubble in a thick layer  of liquid taking into 
account the change in the rate of its r i s e ,  d imensions,  and p ressu re .  

The stat ics  of the dissolution are es t imated by the phase equil ibrium coefficient m whose values for  c e r -  
tain gases are given in Table 1 [8]. 

The kinetics of the p rocess  are  determined by the m a s s - t r a n s f e r  coefficient K 

1 1 1 m 

Only gases with m < 1 (for example,  NH3, HC1) a re  relat ively eas i lydissolvable .  F o r t h e  major i ty  of gases  
which are  of prac t ica l  in teres t ,  m/fll  >> l/fig and the res i s tance  to m a s s  t r ans fe r  in the gaseous phase can be 
neglected. According to experimental  data on dissolving 0 2 and CO 2 in water  the coefficient fig.l, c h a r a c -  
te r iz ing  the res i s tance  at the phase-separa t ion  boundary for  liquids not subjected to special  purifying,  reaches  
re la t ively large values (0.3-4.0 cm/sec).  

For  the discuss ion presented below it is assumed that the kinetics of gas dissolution determined only by 
the mass  t r ans fe r  in the liquid and the problem is solved in the approximation of the diffusion boundary layer .  

The following assumptions are made: Gas dissolution obeys Henry ' s  law and its state is descr ibed by the 
equation of state of an ideal gas; the gas and liquid tempera ture  on the entire path of the r i se  of the bubble and 
the kinetic diffusion coefficient are  constant. 

According to the experimental  data presented  above the entire p rocess  of r i se  of a gas bubble of subcr i t i -  
cal size can be divided into four s tages ,  each of which is charac te r ized  by a cer tain rate of r i se  as function of 
the bubble radius:  for 1 m m  -< r -< r c r ,  v =cons t  =kt; for0 .2  mm - r -< 1 ram, v =k2r; for r m -< r -< 0.2 ram, 
v = k3r2; for r m -> r ,  v =0 (here r m is the radius of the nonris ing bubble). 

Using this approximation we can obtain an equation of the type r =r(t) or r =r(H) for all s tages of r i se  
of the bubble, f rom which we can find such pa rame te r s  as the lifetime of the bubble, the path of r i se  along the 
ver t ica l ,  etc. 

Applying the law of conservat ion of mass  to a single gas bubble we have 

d M  = - - I d t ,  (3) 

where the diffusion flux is obtained by integrat ing the equation of stat ionary convective diffusion. During the 
r i se  of the bubble in an unperturbed liquid [3] 

[ - - 8  (Dr) ~ r -5 (ce~--c=). 
(4) 
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The m a s s  of the gas bubble is equal to 

M = 4.  ~pr~" 
3 

In accordance with the assumptions made above we have 

(5) 

P0 H, 
P=H0 
Ce~= ~ H, ,.t Ha 

(6) 

(7) 

and the vertical coordinate can be expressed in the form 

n = Ho--Vt, 

so that 

(8) 

4 Po dM = - -  n [3 (H o - -  vt) r2dr - -  vr3dt]. (9) 
3 H o 

The concentrat ion of the gas dissolved in the liquid away f rom the bubble is general ly an a rb i t r a ry  func- 
tion of the coordinate H. However,  for  mos t  cases  of prac t ica l  in te res t  it can be descr ibed by the formulas  

c,, = c|176 H, (lO5 
Ho 

where  

c| = const = d. (11) 

In the f i r s t  stage of r i se  (v = kl) substituting the values of Cp and c ~  determined f rom formulas  (7) and 
(10), respec t ive ly ,  into Eq. (4)we get 

I = 8 (Dkt)Tr ~" Ht - -  kit (12) Hi (Ce~-C| 

Substituting (9) and (125 into Eq. (3) we obtain the differential  equation for the change of  bubble radius 
with time 

d r q l  kt 1 / / -  ~ 1 d---[ 3 k i t _ H i  r = -  (Dkt)-~'- Ceql-C| r---•-' (13) 

Its general  integral  is 
l 3 

which is an equation of Bernoulli  type. 

_ ) ] }  

The constant  of integration C in Eq.(145 is determined f rom initial conditions - for  t = 0, r = r  t - and thus we 
obtain solution of Eq. (13) 

1 1 1 2 

MaMng use of (85 we obtain the dependence of the bubble radius on the coordinate 
1 1 I '~ 

r - ~  r l "  - -  Ceql-- C~ 1 Hi - - H  (16) 
�9 P t  

In the case when the gas density far  f rom the bubble is descr ibed by function (115, it is more  convenient to ob- 
tain a differential  equation of the change in bubble radius as a function of the coordinate,  having the following 
fo rm:  

1 

dH + 3 H = ~ Pi \ H-'ceq-----i! " 
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After  integrat ing this equation with the initial conditions r : r  i, for  H = Hi, we have 

1 I I 2 

{ , (  .- - ( ) .  [ r =  rS H i ] - - - I / 2 - -  D" C-e'51t H't--ff] H I ' 
H ] I/ ~ ~ Pl ~'eqf -eql 

(is) 

or ,  pass ing over  to the dependence of the radius on time we have 

1 1 1 2 ' < ]}-" o , < r = r, - -  H,  \ i  - - 3  + 3 H , -  - -  ( H , - -  k,t) . (19) 
c e q i  

Similarly after  substituting the appropria te  values of rate v in Eqs. (4) and (9) we obtain equations con- 
necting the bubble radius with the coordinate for  the second stage of r i se  (v = k2r) : 

2 1 2 ! 

(.) Ir~ U 3 6 Ce_~-c~7 r H ( H, 
" ~.. L : t n ,  - H (20) 

#" 

t 

2 I 2 1 

( _ _ , , ( 1 _ _  ,:{,,.<",'~' ~ -o~<.<,,r .~ ),-(, ~c,)  ~ <  ~-. 
< .  / 5 V ' - ~  ~ )  ,~< , 9. ,.o<, ~. , , .  s-t (21) 

For  the third stage of r i se  (v = k3r 2) we have 
5 1 5 2 

5 1 5 2 

ii ~ ~ \ Ceq31 Ceq 3 H 

here  Eqs. (20) and (22) pertain to the case when the gas density in the liquid changes according to (10) and 
Eqs. (21) and (23) a re  valid for  a constant concentrat ion (11). 

A compar ison of the above solutions with the data obtained under the assumption of constancy of the gas 
density in the bubble, the concentrat ion p r e s s u r e ,  and the rate of r ise  of the bubble shows that for  large bub- 
bles (r > 1 mm) the resul ts  of computations are significantly different for small  initial p r e s s u r e s  and that they 
converge for  increas ing  p r e s su re s .  Thus,  at an initial p r e s s u r e  of 15 aim for an air  bubble r is ing in water 
the time for decreas ing  the radius f rom 2 to 1 mm,  computed according to formula (15), exceeds by 100% the 
t ime computed f rom the formulas  given in [9] assuming pg = const,  Ac = const,  and v = const;  for  an initial 
p re s su re  of 150 atm this difference is 15%. 

For  a small  bubble (r < 1 ram) the computations using formulas  (20)-(23)are in good agreement  with the 
solutions for  pg = const ,  if only we assume as before that the rate of r i se  of the bubble is proport ional  to its 
radius and for r < 0.2 m m  it is proport ional  to the square of the radius.  

A number of experimental  resu l t s  indicate that the bubbles of sufficiently small  radius do not r ise in the 
liquid. Thus,  under cer ta in  conditions sea water  contains nonfloating air  microbubbles of a radius on the o r -  
der of 20 Iz at different depths [10]. 

It can be assumed that the r i se  of the bubble stops when the rate  of r i se  becomes comparable to the 
veloci ty of the the rmal  motion of the bubble, i .e . ,  of a Brownian part icle .  The radius of a nonrising bubble 
computed on the basis  of this assumption is in good agreement  with experimental  data. 

For  determining the dissolution time of a nonris ing bubble (fourth stage) we can make use of Langmuir  
formula 

Sh= 2r~-c = 2. (24) 
D 

Since at this stage the bubble does not rise, the change of gas density and concentration is determined 
only by the change in the surface tension force as the gas diffuses out of the bubble 

[ 2(~* 1 (25) 
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ceq=Ceq4(l + ~ r  ) '  (26) 

where  

H 6. = 6 - -  �9 10 -4. 
, A,{ 

Considering that 

1 dM 

~t = 4~r 2(%q-c| dt ' 

substi tuting (25) into Eqs.  (5) we obtain the following equation f rom (24): 

(27) 

( r +  4 o * )  D(ceoA-c')( l+ 2 ~ ) d t "  - - . - -  dr (28) 
3 H A pt 

Integrating this equation under the initial conditions r = r 4 at t = O we obtain the solution 

t =  P~ {4 ~ ( ~ 1 )In r~Ht+2~ 
D(ceq4-C' ) ~-~ H~ 3 ,  rH~ + 2& + 

21 H,&'2 o * )  2 ] 16 6* ) (29) + ) r +2  - -  ( r t - -  r) . 

For  H a > 10 m and r < 10 -7 m in (29) we can neglect  the t e rms  containing o*/H 4 (a* is on the order  of 10 -7 
m2). Then we obtain the simple formula 

t =  1 ~ ,(r~_r2) ' 
2 D (ceq ~- c ) (30) 

which agrees  with the formula given in [11]. 

The right-hand s ides  of Eqs.  (16), (18), (20), (21), (22), and (23) r ep resen t  the difference of two t e rms ;  
the f i r s t  of these contains the initial radius and the ra t io  of the initial coordinate to the ver t ica l  coordinate,  
while the second contains the kinematic  diffusion coefficient.  

Depending on the gas and liquid cha rac te r i s t i c s  and also on the initial conditions during its r i se  the bub- 
ble can dec rease  in volume (if diffusion predominates  over  gravitational expansion), as well  as it can increase .  

In a number  of prac t ica l  cases  the conditions under which the gas bubbles passing through a liquid do not 
reach  the free  surface  are  of interest .  For  determining these conditions we analyze the equations connecting 
the bubble radius  with the ver t ica l  coordinate.  

In the case  when the gas concentrat ion in the liquid changes according to (10), the condition of dec rease  
in the bubble radius during its r i se  (in the f i r s t  stage) is obtained f rom Eq. (16) 

I 1 

] r, - .  < r ,  2, 

where  
l 

hence,  i t  follows that 

I 1 

r t < [ ~ ( H  i + H 1 2 H 2  +H)] .  
(32) 

Putting H = 0 we obtain the condition of monotonic dec rease  of the bubble f rom inequality (32) 
2 

r~ < (*r ~ .  (33) 

200 



If  condition (33) is not fulfilled, function (16) can have an ext remum. Equating the f i r s t  derivative of the 
radius to zero  and assuming r ~ 0 we can determine the value of the coordinate at  which the radius goes 
through the ex t remum:  

2 

H =  1 HI  ~ (rl ~ - -~Hi)  

It  is obvious that the ex t remum value of the radius is meaningful for H < Hi; so it follows f rom formula 
(34) that 

2 

r~ ~ (3aHt) 5-. (35) 

If condition (35) is not sat isf ied,  then during its r i se  the bubble increases  monotonically in volume. 

It  is not difficult to ver i fy  that the second derivat ive of the radius is posit ive and hence the obtained ex-  
t r emum corresponds  to the minimum of the radius.  We find this value by substituting (34) into Eqs.(16): 

2 1 3 4 

rmin= 1.53 9 [H12 (rl2 _aHt)]~-. (36) 

If it turns out that Rmi n < 10 -3 m,  then the fur ther  evolution of the bubble is determined by Eq. (20). 

It follows f rom Eq. (36) that rmin < 10-3 m if 

2 

It follows f rom Eq. (20) that at the second stage of r ise  the bubble radius will decrease  monotonically if 

l 

rmm < CON2 - 

In order to determine what happens to the bubble after it reaches the minimum value rmi n < 10 -3 m in 
the second stage of rise in inequality (38) instead of H 2 we substitute the coordinate corresponding to the mini- 
mum radius given by formula (34). The bubble will decrease monotonically if 

2 

2 H I  2 

It is seen f rom a compar ison of formulas  (37) and (39) that when condition (37) is satisfied and the mini -  
mum value of the bubble radius falls within the radii  charac te r iz ing  the second stage of r i se  the bubble will 
always decrease  in size thereaf ter .  

A s imi lar  analysis  can be done also for  the case of constant gas concentrat ion in the liquid far  f rom the 
bubble. Omitting the intermediate  computations we give the condition of monotonic dec rease  of the bubble 
radius 

2 

r i < [~Hi (1 - -  37)17, (40) 

where 
1 

D T Ceql ? 

Dl C c q l  

and also the condition of decrease  of the bubble radius in the second stage of r ise  (after reaching the minimum 
value of the radius rmi  n < 10 -3 m in the f i r s t  stage): 
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2 [ 2 ] 
r t <  ~Hi (1-- 37) + ~ ~ (~7Hi+ 1.055. I0-') -~ ~-. (41) 

z H19- 

The above relations between the radius of the rising gas bubble and the coordinate enable us to compute 
the character is t ics  of the absorption process  for all sizes of columns and their elements. 

These relations are valid also for processes  occurring at high pressures .  Computational estimates 
show that the e r r o r s  related to the assumptions made here  do not exceed 5% up to pressures  on the order  of 
200 atm for all gases that are not easi ly dissolved. 
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N O T A T I O N  

bubble radius; 
bubble r ise  velocity; 
time; 
absolute height of liquid column (vertical coordinate); 
mass;  
diffusion flux; 
density; 
volumetric concentration; 
diffusion coefficient; 
surface tension coefficient; 
mass - t rans fe r  coefficient; 
phase equilibrium coefficient; 
mass-exchange coefficient; 
resis tance coefficient; 
Reynolds number; 
Sherwood number. 

I n d i c e s  

g 
l 
g.l 
0 
1, 2, 3, 4 
eq 
ap 
b 

is the gas; 
is the liquid; 
is the gas- l iquid  interface; 
is the initial value; 
are the initial values on corresponding bubble r ise stages; 
is the value at equilibrium; 
is the aperture;  
is the bubble. 
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